Cache Optimization in Multicomponent
Unstructured-Grid Implicit CFD Codes

William D. Gropp
MCS Division, Argonne National Laboratory

Dinesnh K. Kaushik
CS Department, Old Dominion University & Argonne

David E. Keyes
CS Department, Old Dominion University & ICASE

Barry F. Smith
MCS Division, Argonne National Laboratory

http://www.mcs.anl.gov/petsc-fun3d

Organization of the Presentation

Understanding the sources of poor
ner-processor performance

Performance i1ssues for unstructured grid
solvers

Cache and register optimizations
Conclusions

Motivation

Sequential performance on many machinesisalow
percentage of peak

Per-processor performance on T3E staysfairly constant wi
going from 128 to 1024 processors
— Parallel programming iseasy! Itisuniprocessor programming th
difficult
Memory performance improvement rate (7% per year) isf
behind the CPU performance growth (about 55% per year)

The programmer can do a good job in expressing the coars
grained concurrency but getting good cache locality isabi
challenge (especially for unstructured PDE solvers)

Getting good per processor performance isthe key to
achieving good parallel performance

Description of PETSc-FUN3D

PETSc-FUN3D isthe result of porting FUN3D (devel ope
by W. K. Anderson, NASA Langley) to PETSc

Tetrahedral vertex-centered unstructured grid code for
Incompressible and compressible Euler and Navier-Stokes
equations

1st- or 2nd-order Roe for convection and Galerkin for
diffusion, and fal se time stepping with backward Euler for
nonlinear continuation towards steady state

Newton-Krylov-Schwarz (fully implicit, matrix free)
solver; the timestep is advanced towards infinity by the
switched evolution/relaxation (SER) of Van Leer and
Mulder

The preconditioner (incomplete LU with zero fill) in each
domain is derived from from 1st-order accurate Jacobian

Per Processor Performance on T3E

Euler flow over an ONERA M6 Wing, on atetrahedral grid of 2.8 M
vertices, run up to 1024 processors of a 600 MHz T3E

O Mflop/s per Processor

90

80
70
60
50
40
30
20
10

0

128 256 384 512 640 768 896 1024

Sequential Performance of
PETSc-FUN3D

@ Peak Mflops’'s M Stream Triad Mflops/'s B Observed Mflops/s

)00
300
700
500
>00
100
300
200
LOO

SP2 Origin T3E

Three Fundamental Limiting
Factors to Peak Performance

Memory Bandwidth
— Processor does not get data at the rate it requires

|nstruction Issue Rate

— |If the loops are load/store bound, we will not be able tc
do afloating point operation in every cycle even if the
operands are available in primary cache

— Several constraints (like primary cache latency, latency
of floating point units etc.) are to be observed while
coming up with an optimal schedule

Fraction of Foating Point Operations
— Every instruction is not floating point instruction

Analyzing A Simple Kernel:
Sparse Matrix Product

Sparse matrix vector product is important
part of many Iterative solvers

Its performance modeling Is easy

We present ssmple analysis to predict better
performance bounds (based on the three
architectural limits) than the * marketing”
peak of aprocessor

Performance | ssues for Sparse
Matrix Vector Product

Little data reuse

High ratio of load/store to
Instructions/floating-point ops

Stalling of multiple load/store functional
units on the same cache line

L ow available memory bandwidth

Sparse Matrix Vector Algorithm:
A Genera Form

or every row, i {
fetchia(i+1)
forj=1all)toia(i +1) { //loop over the non-zeros of the
fetch ja), a(), x,Ga()), -....xy(a())
do N fmadd (floating multiply add)
}

Store y, (i)yN(1)
F

Estimating the Memory
Bandwidth Limitation

.ssumptions
Perfect Cache (only compulsory misses, no overhead)
No memory latency
Unlimited number of loads and stores

)ata Volume (AlJ Format)
n*sizeof (int) + N* (m+n)* sizeof (double))
/[1a, N input (size n) and output (size m) vectors
-nz* (sizeof(int) + sizeof(double))
// ja, and a arrays
= 4*(m+nz) + 8*(N*(m+n)+ nz)

Estimating the Memory
Bandwidth Limitation ||

Number of Floating-Point Multiply Add (fmadd) Ops= N*nz
For square matrices,

Bytestransferred/fmadd :g‘iG + igﬂ + 1_2
e Ng nz N

(Since nz >> n, Bytestransferred / fmadd ~12/N)

Similarly, for Block AlJ (BAIJ) format

Bytestransferred/fmadd:8'16+ L ge 4,80
E N*bg nz eN*b Ng

Performance Summary on 250
MHz R10000

Aatrix size, n = 90,708; number of nonzero entries, nz = 5,047,120
Jumber of Vectors, N =1, and 4

-ormat | Number of | Bytes/ Bandwidth MFlops
Vectors | fmadd | Required | Achieved | Ideal | Achieve
AlJ 1 12.36 3090 276 58 45
AlJ 4 3.31 827 221 216 120
BAIJ 1 9.31 2327 84 55
BAIJ 4 2.54 635 229 305 175

Prefetching—Fully Use the
Available Memory Bandwidth

Many programs are not able to use the available
memory bandwidth for various reasons

|deally a memory operation should be scheduled
IN each cycle since each cycle isalost opportunity

Compilers do not do enough prefetching

|mplementing and estimating the right amount of
prefetching is hard

Estimating the Operation Issue Limitation
\T:address trandln; Br: branch; | op: integer op; Fop: floatin
point op; Of: offset calculation; Ld: load; St: store

X (i=0,i<mi++)]

jrow =ia(i+1) /I 10f, AT, Ld
ncol = ia(i+1) -ia(i) /I 11op
Initialize, sum;,sumy /[N Ld
for (j =0;) <ncol; j++) { //1Ld

fetch ja(jrow), a(jrow), x,(ja(jrow)), Xy(ja(row))
/[1 Of, N+2 AT, ar

do N fmadd (floating multiply add) /Il 2N Fop
} /[1lop, 1 Br
Store sum,.....sumy iny,(i)yN(i) /[1Of, N AT, and .

} // 11op, 1 Br

Estimating the Operation |ssue
Limitation ||

Assumptions:
— Dataitems arein cache

— Each operation takes only one cycle to complete but multiple
operation can graduate in one cycle

If only one load or store can be issued in one cycle (asisthe case on
R10000 and many other processors), the best we can hope for is

Number of floating point instructions
Number of Loadsand Stores

* Peak MFlops/s

Other restrictions (like primary cache latency, latency of floating poin
units etc.) need to be taken into account while creating the best
schedule (especially on those processors where software pipelining is
Important)

Estimating the Fraction of
Floating Point Operations

Assumptions:;
— Infinite number of functional units
— dataitemsarein primary cache

Estimated number of floating point operations out of the
total instructions:;

:a number of instructions completed (1) =m* (3* N +8) +nz* (4* N
2* N* nz

ction spent on floating point work (lf) =
P P () m* (3* N+8)+nz* (4* N +

For N=1,1;=0.18and N =4, |, = 0.34.

Redlistic Measures of Peak Performance

Sparse Matrix Vector Product
one vector, matrix size, m = 90,708, nonzero entriesnz = 5,047,120

| Pe
Pe
eal

SP Origin T3E Pentium Ultrall

Experimental Performance

Sparse Matrix Vector Product
one vector, matrix size, m = 90,708, nonzero entriesnz = 5,047,120

300

250

200

150

LOO

50

0

SP T3E Ultrall

T3E Performance—A Closer
ook

Stream On Stream Off

lmplications

Reducing memory useiscritical

— Reuse data items

— Reuse items in cache

— Other memory effects also important (see TLB,
ahead)

Reducing the number of non-floating-point

Instructions is also Important

— Reuse items in registers (reduce |oads, address
computation)

Enhancing Locality

Choose data layouts that enhance locality at every level of memory
hierarchy

Storage/use patterns should follow memory hierarchy
— Blocksfor Registers
» block storage format for multicomponent systems—saves CPU cycles
— Interlaced Data Structuresfor Cache
* Choose
ul,vli,wl,pl,u2,v2,w2,p2,...
in place of
ul,u2,...vive,..,.wiw2,...pl,p2,...
— Subdomainsfor Distributed Memory
e “Chunky” domain decomposition for optimal surface-to-volume
(communication-to-computation) ratio
— This hierarchy is concerned with different issues than the algorithmic
efficiency issues associated with the hierarchies of grids

Data L ayouts and Reorderings

Edge Reordering
— Sort the nodes at either ends of the edges

— Effectively transforms an edge based |oop into a node
based loop

— Enhances temporal locality

Node Reordering

— Bandwidth reducing orderings will reduce the TLB anc
cache misses by referring to data items that are close in
memory.

— Our experience iswith RCM and Sloan

Locality Enhancing Strategies in
PETSc-FUN3D

Flow over M6 wing with agrid of 22,677 vertices
(90,708 DOFs incompressible; 113,385
compressible)

Turn on each optimization one by oneto isolate
the effect of each

Employed the “best” optimization flags

Five Architectures considered: Cray T3E, IBM
SP, Origin 2000, Intel Pentium, and Sun Ultra

Impact of these techniques vary on different
architectures—improvement ranges from 2.5 on
Pentiumto 7.50n SP

Seguential Performance—Time/iteration
SP: IBM P2SC (“thin™), 120 MHz, cache: 128 KB data and 32 KB instr
Origin: MIPS R10000, 250 MHz, cache 32 KB data/32KB instr/4MB L2
Pentium: Intel Pentium |1, 400 MHz, cache: 16K Bdata/16KB instr/512 KB L2

180
160
140
120
100
80
60
40
20
0

SP Origin

Pentium

[Base NOER

M Interlacing NOEF
M Blocking NOER
B Base

O Interlacing

M Blocking

TLB Misses:
Measured Values on Origin

alel
1.00E+09
LR 0 Base NOER
1.00E+07 B I nterlacing NOEF
| B Blocking NOER

1.00E+06 B Base |

O Interlacing
1.00OE+05 M Blocking

1.00E+04

Primary Cache Misses.
Measured Values on Origin

7.00E+08

5.00E+08
O Base NOER

M Interlacing NOEF
M Blocking NOER
B Base

O Interlacing

M Blocking

5.00E+08

1.00E+08

3.00E+08

2.00E+08

1.00E+08

Secondary Cache Misses:
Measured Values on Origin

/.00E+Q7

5.00E+07

57.00E+07

1.00E+07

3.00E+07

2.00E+Q7

1.00E+0Q7

[0 Base NOER

M Interlacing NOEF
M Blocking NOER
B Base

O Interlacing

M Blocking

Graduated L oads and Stores Per
Floating Point Instruction

[0 Base NOER

M Interlacing NOEF
M Blocking NOER
B Base

O Interlacing

M Blocking

Sequential Performance of
PETSc-FUN3D

O Peak M Flops

M Observed
M Flops

0

SP Origin T3E

Conclusions

The per-processor performanceis crucial to get good parallel
performance

Our models predict the performance of sparse matrix-vector operation
on avariety of platforms, including the effects of memory bandwidth,
and instruction issue rates

The achievable “peak performance” for these operations is a small
fraction of the stated peak, independent of code quality

— compiler improvements can help but will not solve the problem

Intelligent prefetching isrequired to fully utilize the available memory
bandwidth

Data structure transformations (like blocking, interlacing, and edge
reordering) that enhance the temporal and spatial locality in the
memory reference patterns have improved the performance by alarge
factor (2.5 on Pentium and 7.5 on SP2).

Future Directions

Design better data structures and implementation strategie
for sparse matrix vector and related operations

Integrate our understanding of the performance issues wit
developments in block-structured algorithms to produc
linear and nonlinear solvers that achieve a higher fractio
of peak performance on a per-node basis

Look at important special cases in hierarchical algorithms
where our performance model recommends alternate data
structures and library methods

References

On the interaction of Architecture and Algorithmin the Domain-Basa
Parallelization of an Unstructured Grid Incompressible Flow Code
(Kaushik, Keyes, and Smith), 1998, in “Proc. Of the 10th Intl. Conf.
On Domain Decomposition Methods’, J. Mandel et al., eds., AMS, pf
311-319.

— Cache-awarefocus
Newton-Krylov-Schwarz Methods for Aerodynamic Problems:
Compressible and Incompressible Flows on Unstructured Grids

(Kaushik, Keyes, and Smith), 1998, submitted to “Proc. of the 11th
Intl. Conf. On Domain Decomposition Methods’, C.-H Lai et al., eds.

— Multi-platform focus
These can be downloaded from http://www.cs.odu.edu/~keyes

